Cambridge International AS \& A Level

CANDIDATE NAME

CENTRE \square

CANDIDATE NUMBER

CHEMISTRY

9701/36
Paper 3 Advanced Practical Skills 2
October/November 2021
2 hours

You must answer on the question paper.
You will need: The materials and apparatus listed in the confidential instructions

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working, use appropriate units and use an appropriate number of significant figures.
- Give details of the practical session and laboratory, where appropriate, in the boxes provided.

INFORMATION

- The total mark for this paper is 40 .
- The number of marks for each question or part question is shown in brackets [].

- The Periodic Table is printed in the question paper.
- Notes for use in qualitative analysis are provided in the question paper.

For Examiner's Use	
1	
2	
3	
Total	

This document has 16 pages. Any blank pages are indicated.

Quantitative analysis

Read through the whole method before starting any practical work. Where appropriate, prepare a table for your results in the space provided.

Show your working and appropriate significant figures in the final answer to each step of your calculations.

1 Solid FB 1 is hydrated sodium carbonate, $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}$. You will determine the value of \mathbf{x} in a sample of FB 1.

The experiment involves three steps:
Step 1 React a known mass of sodium carbonate, FB 1, with an excess of acid.
Step 2 Dilute the products of Step 1 to a known volume.
Step 3 Carry out a titration to find out how much acid remained after the reaction in Step 1.
You will use the results of these three steps to find \mathbf{x}.
FB 1 is hydrated sodium carbonate, $\mathrm{Na}_{2} \mathrm{CO}_{3} \times \mathrm{HH}_{2} \mathrm{O}$.
FB 2 is $0.800 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid, HCl .
FB 4 is $0.100 \mathrm{moldm}^{-3}$ sodium hydroxide, NaOH .
bromophenol blue indicator
(a) Method

Step 1

- Label a burette FB 2 and fill this burette with FB 2.
- Run $50.00 \mathrm{~cm}^{3}$ of FB 2 into the $250 \mathrm{~cm}^{3}$ beaker.
- Weigh the container with FB 1. Record the mass.
- Slowly, and in small portions, add FB 1 to the acid.
- Stir the mixture until the fizzing has stopped. Leave the stirring rod in the beaker.
- Reweigh the container with any residue. Record the mass.
- Calculate and record the mass of FB 1 added to the acid.

Step 2

- Stir the mixture from Step 1 and ensure that all the solid has dissolved. Transfer this solution to the graduated flask.
- Rinse the beaker and stirring rod twice with distilled water, then add the washings into the graduated flask.
- Make the solution up to $250 \mathrm{~cm}^{3}$ with distilled water. Thoroughly mix the contents of the flask. This solution is FB 3.

Step 3

- Label the other burette FB 4. Fill this burette with FB 4.
- Pipette $25.0 \mathrm{~cm}^{3}$ of FB 3 into a conical flask.
- Add several drops of bromophenol blue indicator.
- Perform a rough titration and record your burette readings in the space below.

The rough titre is \qquad cm^{3}.

- Carry out as many titrations as you think are necessary to obtain consistent results.
- Make certain any recorded results show the precision of your practical work.
- Record, in a suitable form below, all of your burette readings and the volume of FB 4 added in each accurate titration.

I	
II	
III	
IV	
V	
VI	
VII	
VIII	

(b) From your accurate titration results, calculate a suitable mean value to use in your calculations. Show clearly how you obtained this value.

Calculations

(c) (i) Give your answers to (c)(ii), (c)(iii), (c)(iv), and (c)(vi) to an appropriate number of significant figures.
(ii) Calculate the number of moles of hydrochloric acid in the FB 2 used in Step 1.
moles of HCl in FB 2 used in Step $1=$ \qquad mol [1]
(iii) Use your answer to (b) to calculate the number of moles of sodium hydroxide, FB 4, required to react with $25.0 \mathrm{~cm}^{3}$ of FB 3 in Step 3.
moles of NaOH required $=$ \qquad mol

Use this answer to deduce the number of moles of hydrochloric acid in $250 \mathrm{~cm}^{3}$ of FB 3. This is the number of moles remaining after the reaction in Step 1.
moles of HCl in $250 \mathrm{~cm}^{3}$ of $\mathrm{FB} 3=$ mol
(iv) Use your answers to (c)(ii) and (c)(iii) to calculate the number of moles of hydrochloric acid that reacted with sodium carbonate in FB 1.
moles of HCl that reacted with FB $1=$ \qquad mol [1]
(v) Write an equation for the reaction of sodium carbonate with hydrochloric acid in Step 1. Include state symbols.
(vi) Use the equation and your answer to (c)(iv) to determine the moles of sodium carbonate present in FB 1.
(vii) Use your answer to (c)(vi) and your mass of FB 1 to calculate the formula mass of hydrated sodium carbonate. Hence find the value for \mathbf{x}.
(If you were unable to calculate the number of moles of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in (c)(vi) assume that it is $5.55 \times 10^{-3} \mathrm{~mol}$. This is not the correct value.)

$$
x=
$$

(d) State the maximum error in a single balance reading.

$$
\text { maximum error in a balance reading = } 9
$$

Calculate the maximum percentage error in the mass of FB 1 you used.
Show your working.
maximum percentage error $=$
(e) A student decided to use a larger mass of FB 1 when carrying out the same method.

What effect would this have on the titre volume in Step 3?
Explain your answer.
\qquad
\qquad
\qquad

2 In this question you will determine the value of \mathbf{y} in another sample of hydrated sodium carbonate by thermal decomposition.

The equation for the reaction which occurs is given below.

$$
\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \mathrm{yH}_{2} \mathrm{O}(\mathrm{~s}) \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})+\mathrm{yH} \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

Solid FB 5 is another sample of hydrated sodium carbonate, $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \mathrm{yH}_{2} \mathrm{O}$.
(a) Method

- Weigh the empty crucible with its lid. Record the mass.
- Transfer all the FB 5 from its container into the crucible.
- Weigh the crucible, lid and FB 5. Record the mass.
- Calculate and record the mass of FB 5 used.
- Place the crucible and contents on a pipe-clay triangle.
- Heat the crucible gently, with the lid on, for approximately 1 minute.
- Heat strongly, with the lid on, for a further 1 minute.
- Heat strongly, with the lid off, for a further 4 minutes.
- Allow the crucible to cool, with the lid on, for at least 5 minutes.

During the cooling period you may wish to start work on Question 3.

- When the crucible is cool, weigh the crucible with its lid and contents.
- Calculate and record the mass of the residue obtained and the mass lost during heating.

I	
II	
III	

(b) Use your results to calculate a value for \mathbf{y}.
$y=$
(c) Suggest one improvement to the method used in Question 2 which would lead to a more accurate value for \mathbf{y}.
\qquad
\qquad
\qquad
[Total: 6]

Qualitative analysis

Where reagents are selected for use in a test, the name or correct formula of the element or compound must be given.

At each stage of any test you are to record details of the following:

- colour changes seen
- the formation of any precipitate and its solubility in an excess of the reagent added
- the formation of any gas and its identification by a suitable test.

You should indicate clearly at what stage in a test a change occurs.

If any solution is warmed, a boiling tube must be used.

Rinse and reuse test-tubes and boiling tubes where possible.

No additional tests for ions present should be attempted.

3 (a) FB 6, FB 7 and FB 8 each contain one cation and one anion. All the cations and anions are different. All the cations and two of the anions are listed in the Qualitative Analysis Notes. FB 7 is an aqueous solution.
(i) Carry out the following tests and record your observations.

test	
Test 1 To a 1 cm depth of hydrogen peroxide in a test-tube, add a small spatula measure of FB 6.	

test	
Test 3 To a 1 cm depth of FB 7 in a test-tube, add an equal volume of hydrogen peroxide. Shake the tube, then	
add aqueous sodium hydroxide.	

(ii) From your test results, identify the anions in FB 6, FB 7 and FB88. If the tests do not allow you to positively identify an anion, write 'unknown'.

	FB 6	FB 7	FB 8
formula of anion			

(b) Aqueous sodium hydroxide may be used to help identify cations. You will use this reagent to carry out tests on FB 7 and FB 8.
Record your method, observations and conclusions in the space below.
You are reminded that if any solution is warmed, a boiling tube must be used.
(c) (i) From your observations, suggest a conclusion that could be made about the chemical behaviour of FB 7 in Test 3 of (a)(i).
Explain your answer.
\qquad
\qquad
(ii) Write an ionic equation for any precipitation reaction you observed in (a)(i). Include state symbols.
\qquad

BLANK PAGE

BLANK PAGE

BLANK PAGE

Qualitative Analysis Notes

1 Reactions of aqueous cations

ion	reaction with	
	$\mathrm{NaOH}(\mathrm{aq})$	$\mathrm{NH}_{3}(\mathrm{aq})$
aluminium, $\mathrm{Al} \mathrm{l}^{3+}(\mathrm{aq})$	white ppt. soluble in excess	white ppt. insoluble in excess
ammonium, $\mathrm{NH}_{4}^{+}(\mathrm{aq})$	no ppt. ammonia produced on heating	-
barium, $\mathrm{Ba}^{2+}(\mathrm{aq})$	faint white ppt. is nearly always observed unless reagents are pure	no ppt.
calcium, $\mathrm{Ca}^{2+}(\mathrm{aq})$	white ppt. with high [$\left.\mathrm{Ca}^{2+}(\mathrm{aq})\right]$	no ppt.
$\begin{aligned} & \text { chromium(III), } \\ & \mathrm{Cr}^{3+}(\mathrm{aq}) \end{aligned}$	grey-green ppt. soluble in excess	grey-green ppt. insoluble in excess
$\begin{aligned} & \text { copper(II), } \\ & \mathrm{Cu}^{2+}(\mathrm{aq}) \end{aligned}$	pale blue ppt. insoluble in excess	pale blue ppt. soluble in excess giving dark blue solution
iron(II), $\mathrm{Fe}^{2+}(\mathrm{aq})$	green ppt. turning brown on contact with air insoluble in excess	green ppt. turning brown on contact with air insoluble in excess
iron(III), $\mathrm{Fe}^{3+}(\mathrm{aq})$	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess
magnesium, $\mathrm{Mg}^{2+}(\mathrm{aq})$	white ppt. insoluble in excess	white ppt. insoluble in excess
$\begin{aligned} & \text { manganese(II), } \\ & \mathrm{Mn}^{2+}(\mathrm{aq}) \end{aligned}$	off-white ppt. rapidly turning brown on contact with air insoluble in excess	off-white ppt. rapidly turning brown on contact with air insoluble in excess
$\begin{aligned} & \text { zinc, } \\ & \mathrm{Zn}^{2+}(\mathrm{aq}) \end{aligned}$	white ppt. soluble in excess	white ppt. soluble in excess

2 Reactions of anions

ion	reaction
carbonate, $\mathrm{CO}_{3}{ }^{2-}$	CO_{2} liberated by dilute acids
chloride, $\mathrm{Cl}^{-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (soluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
bromide, $\mathrm{Br}^{-}(\mathrm{aq})$	gives cream ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (partially soluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
iodide, $I^{-(a q)}$	gives yellow ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (insoluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
nitrate, $\mathrm{NO}_{3}^{-}(\mathrm{aq})$	NH_{3} liberated on heating with $\mathrm{OH}^{-}(\mathrm{aq})$ and Al foil
nitrite, $\mathrm{NO}_{2}^{-}(\mathrm{aq})$	NH_{3} liberated on heating with $\mathrm{OH}^{-}(\mathrm{aq})$ and Al foil
sulfate, $\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ba}^{2+}(\mathrm{aq})$ (insoluble in excess dilute strong acids)
sulfite, $\mathrm{SO}_{3}^{2-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ba}^{2+}(\mathrm{aq})$ (soluble in excess dilute strong acids)

3 Tests for gases

gas	test and test result
ammonia, NH_{3}	turns damp red litmus paper blue
carbon dioxide, CO_{2}	gives a white ppt. with limewater (ppt. dissolves with excess CO_{2})
chlorine, Cl_{2}	bleaches damp litmus paper
hydrogen, H_{2}	'pops' with a lighted splint
oxygen, O_{2}	relights a glowing splint

The Periodic Table of Elements																	
Group																	
1	2											13	14	15	16	17	18
		Key				1 H $\substack{\text { hydrogen } \\ 1.0}$		$\begin{array}{lllll}9 & 10 & 11 & 12\end{array}$									$\begin{gathered} 2 \\ \mathrm{He} \\ \text { helium } \\ 4.0 \\ \hline \end{gathered}$
3 Li lithium 6.9	4 Be $\substack{\text { berylium } \\ 9.0}$	atomic number atomic symbol name relative atomic mass				7	8					$\begin{gathered} 5 \\ \text { B } \\ \text { boron } \\ 10.8 \\ \hline \end{gathered}$	6 C carbon 12.0	7 N nitrogen 14.0	8 O oxygen 16.0	9 F fluorine 19.0	10 Ne neon 20.2
$\begin{gathered} 11 \\ \mathrm{Na} \\ \text { sodium } \\ 23.0 \end{gathered}$	$\underset{\substack{\text { magnesium } \\ 24.3}}{\mathrm{Mg}}$	3	$4 \quad 50$									$\underset{\substack{\text { aluminium } \\ 27.0}}{\mathrm{Al}}$	$\begin{gathered} 14 \\ \hline \mathrm{Si} \\ \substack{\text { silicon } \\ 28.1} \end{gathered}$	15 P phosphorus 31.0 33	$\begin{gathered} 16 \\ \mathrm{~S} \\ \text { sulfur } \\ 32.1 \end{gathered}$	$\begin{gathered} 17 \\ \mathrm{Cl} \\ \text { chlorine } \\ 35.5 \end{gathered}$	18 Ar argon 39.9
$\underset{\substack{19 \\ \text { potassium } \\ 39.1}}{ }$	$\begin{gathered} 20 \\ \mathrm{Ca} \\ \substack{\text { calcium } \\ \text { 40.1 }} \end{gathered}$	21 Sc $\substack{\text { scandium } \\ 45.0}$	$\begin{gathered} 22 \\ \mathrm{Ti} \\ \substack{\text { titanium } \\ 47.9} \end{gathered}$	$\begin{gathered} \hline 23 \\ \mathrm{~V} \\ \substack{\text { vanadium } \\ 50.9} \end{gathered}$	$\underset{\substack{\text { chromium } \\ 52.0}}{24}$	25 Mn $\substack{\text { manganese } \\ 54.9}$	$\begin{gathered} 26 \\ \mathrm{Fe} \\ \text { iron } \\ 55.8 \end{gathered}$	$\begin{gathered} 27 \\ \mathrm{Co} \\ \text { cobalt } \\ 58.9 \end{gathered}$	$\begin{gathered} 28 \\ \mathrm{Ni} \\ \text { nickel } \\ 58.7 \end{gathered}$	$\begin{gathered} 29 \\ \mathrm{Cu} \\ \text { copper } \\ 63.5 \end{gathered}$	$\begin{aligned} & 30 \\ & \mathrm{Zn} \\ & \text { zinc } \\ & 65.4 \end{aligned}$	31 Ga gallium 69.7	$\begin{gathered} 32 \\ \mathrm{Ge} \\ \substack{\text { germanium } \\ 72.6} \\ \hline \end{gathered}$	$\begin{gathered} 33 \\ \text { AS } \\ \text { arsenic } \\ 74.9 \end{gathered}$	$\begin{gathered} 34 \\ \mathrm{Se} \\ \substack{\text { selenium } \\ 79.0} \end{gathered}$	$\begin{gathered} 35 \\ \mathrm{Br} \\ \text { bromine } \\ 79.9 \end{gathered}$	$\begin{gathered} 36 \\ \mathrm{Kr} \\ \substack{\text { krypton } \\ 83.8} \end{gathered}$
37 Rb $\substack{\text { rubidium } \\ 85.5}$	38 Sr strontum 87.6	$\begin{gathered} \hline 39 \\ \mathrm{Y} \\ \text { y ytrium } \\ 88.9 \\ \hline \end{gathered}$	40 zirconium 91.2${ }^{40}$	$\begin{gathered} 41 \\ \mathrm{Nb} \\ \text { niobium } \\ 92.9 \\ \hline \end{gathered}$	42 Mo $\substack{\text { molybdenum } \\ 95.9}$	43 Tc technetum -		$\begin{gathered} 45 \\ \text { Rh } \\ \text { rhodium } \\ 102.9 \\ \hline \end{gathered}$	46 Pd palladium 106.4	$\begin{gathered} \hline 47 \\ \mathrm{Ag} \\ \text { silver } \\ 107.9 \\ \hline \end{gathered}$	48 Cd cadmium 112.4	$\begin{gathered} \hline 49 \\ \text { I n } \\ \text { indium } \\ 114.8 \\ \hline \end{gathered}$	$\begin{gathered} 50 \\ \mathrm{Sn} \\ \text { tin } \\ 118.7 \\ \hline \end{gathered}$	51 Sb antimony 121.8	$\begin{gathered} 52 \\ \mathrm{Te} \\ \text { tellurium } \\ 127.6 \\ \hline \end{gathered}$	$\begin{gathered} \hline 53 \\ \text { I } \\ \text { iodine } \\ 126.9 \\ \hline \end{gathered}$	54 Xe xenon 131.3
55 Cs caesium 132.9	56 Ba barium 137.3	$\begin{gathered} \hline 57-71 \\ \text { Ianthanoids } \end{gathered}$	$\begin{gathered} 72 \\ \mathrm{Hf} \\ \text { haffium } \\ 178.5 \end{gathered}$	$\begin{gathered} 73 \\ \mathrm{Ta} \\ \text { tantalum } \\ 180.9 \end{gathered}$	$\begin{gathered} 74 \\ \text { W } \\ \text { tungsten } \\ 183.8 \end{gathered}$	75 Re menium 186.2	$\begin{gathered} \hline 76 \\ \text { Os } \\ \text { osmium } \\ 190.2 \end{gathered}$	$\begin{gathered} \hline 77 \\ \mathrm{lr} \\ \substack{\text { indium } \\ 192.2} \end{gathered}$	78 Pt $\substack{\text { platinum } \\ 195.1}$	79 Au gold 197.0	$\begin{gathered} 80 \\ \mathrm{Hg} \\ \begin{array}{c} \text { mercury } \\ 200.6 \end{array} \end{gathered}$	$\begin{gathered} 81 \\ \mathrm{~T} l \\ \substack{\text { thallium } \\ 204.4} \end{gathered}$	$\begin{gathered} 82 \\ \mathrm{~Pb} \\ \text { lead } \\ 207.2 \end{gathered}$	83 Bi $\substack{\text { bismuth } \\ 209.0}$	84 Po polonium -	85 At astatine \qquad	86 Rn radon \qquad
87 Fr francium	88 Ra radium -	89-103 actinoids	104 Rf rutherfordium -	dubnium	$\begin{aligned} & 106 \\ & \mathrm{Sg} \end{aligned}$ seaborgium	107 Bh bohrium			110 Ds darmstadtium	111 Rg roentgenium	$\begin{aligned} & 112 \\ & \mathrm{Cn} \end{aligned}$ copemicium		114 Fl flerovium -		116 $L V$ livermorium -		

\bigcirc ○	
\otimes ¢	
B ב	
	M 은
	\& ᄃ

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

