

Cambridge International AS & A Level

	CANDIDATE NAME				
	CENTRE NUMBER			CANDIE NUMBE	
¢ 0 *	CHEMISTRY				9701/36
0 4	Paper 3 Advanced Practical Skills 2				October/November 2021
					2 hours
2 6 2	You must answer on the question paper.				
7 *	You will need:	The materials a	nd apparatu	is listed in the confidential instruction	ns
	 Write your Write your Do not use Do not writ You may us You should figures. 	questions. k or dark blue pe name, centre nur answer to each o e an erasable per te on any bar coo se a calculator. show all your wo	mber and c question in t n or correcti des. orking, use	use an HB pencil for any diagrams andidate number in the boxes at the the space provided. on fluid. appropriate units and use an approp d laboratory, where appropriate,	e top of the page.
	• The number	ark for this pape or of marks for ea		n or part question is shown	Laboratory
		ic Table is printe		estion paper. e provided in the question paper.	For Examiner's Use

For Exam	iner's Use
1	
2	
3	
Total	

This document has **16** pages. Any blank pages are indicated.

Quantitative analysis

Read through the whole method before starting any practical work. Where appropriate, prepare a table for your results in the space provided.

Show your working and appropriate significant figures in the final answer to **each** step of your calculations.

1 Solid **FB 1** is hydrated sodium carbonate, Na₂CO₃•**x**H₂O. You will determine the value of **x** in a sample of **FB 1**.

The experiment involves three steps:

- Step 1 React a known mass of sodium carbonate, **FB 1**, with an excess of acid.
- **Step 2** Dilute the products of **Step 1** to a known volume.
- **Step 3** Carry out a titration to find out how much acid remained after the reaction in **Step 1**.

You will use the results of these three steps to find \mathbf{x} .

FB 1 is hydrated sodium carbonate, Na₂CO₃•**x**H₂O. **FB 2** is 0.800 mol dm⁻³ hydrochloric acid, HC*l.* **FB 4** is 0.100 mol dm⁻³ sodium hydroxide, NaOH. bromophenol blue indicator

(a) Method

Step 1

- Label a burette **FB 2** and fill this burette with **FB 2**.
- Run 50.00 cm³ of **FB 2** into the 250 cm³ beaker.
- Weigh the container with **FB 1**. Record the mass.
- Slowly, and in small portions, add **FB 1** to the acid.
- Stir the mixture until the fizzing has stopped. Leave the stirring rod in the beaker.
- Reweigh the container with any residue. Record the mass.
- Calculate and record the mass of **FB 1** added to the acid.

Step 2

- Stir the mixture from **Step 1** and ensure that all the solid has dissolved. Transfer this solution to the graduated flask.
- Rinse the beaker and stirring rod twice with distilled water, then add the washings into the graduated flask.
- Make the solution up to 250 cm³ with distilled water. Thoroughly mix the contents of the flask. This solution is **FB 3**.

Step 3

- Label the other burette **FB 4**. Fill this burette with **FB 4**.
- Pipette 25.0 cm³ of **FB 3** into a conical flask.
- Add several drops of bromophenol blue indicator.
- Perform a rough titration and record your burette readings in the space below.

The rough titre is cm³.

- Carry out as many titrations as you think are necessary to obtain consistent results.
- Make certain any recorded results show the precision of your practical work.
- Record, in a suitable form below, all of your burette readings and the volume of **FB 4** added in each accurate titration.

Ι	
II	
III	
IV	
V	
VI	
VII	
VIII	
[8]	

(b) From your accurate titration results, calculate a suitable mean value to use in your calculations. Show clearly how you obtained this value.

25.0 cm³ of **FB 3** required cm³ of **FB 4**. [1]

Calculations

- (c) (i) Give your answers to (c)(ii), (c)(iii), (c)(iv), and (c)(vi) to an appropriate number of significant figures. [1]
 - (ii) Calculate the number of moles of hydrochloric acid in the FB 2 used in Step 1.

moles of HCl in **FB 2** used in **Step 1** = mol [1]

(iii) Use your answer to (b) to calculate the number of moles of sodium hydroxide, FB 4, required to react with 25.0 cm³ of FB 3 in Step 3.

moles of NaOH required = mol

Use this answer to deduce the number of moles of hydrochloric acid in 250 cm³ of **FB 3**. This is the number of moles remaining after the reaction in **Step 1**.

moles of HCl in 250 cm³ of **FB 3** = mol [1]

(iv) Use your answers to (c)(ii) and (c)(iii) to calculate the number of moles of hydrochloric acid that reacted with sodium carbonate in FB 1.

moles of HCl that reacted with **FB 1** = mol [1]

(v) Write an equation for the reaction of sodium carbonate with hydrochloric acid in **Step 1**. Include state symbols.

......[1]

(vi) Use the equation and your answer to (c)(iv) to determine the moles of sodium carbonate present in FB 1.

moles of $Na_2CO_3 = \dots mol$ [1]

(vii) Use your answer to (c)(vi) and your mass of FB 1 to calculate the formula mass of hydrated sodium carbonate.
 Hence find the value for x.

(If you were unable to calculate the number of moles of Na_2CO_3 in (c)(vi) assume that it is 5.55×10^{-3} mol. This is **not** the correct value.)

(d) State the maximum error in a single balance reading.

maximum error in a balance reading = g

Calculate the maximum percentage error in the mass of **FB 1** you used. Show your working.

> maximum percentage error =% [1]

(e) A student decided to use a larger mass of **FB 1** when carrying out the same method.

What effect would this have on the titre volume in **Step 3**? Explain your answer.

[1] [Total: 19]

2 In this question you will determine the value of **y** in another sample of hydrated sodium carbonate by thermal decomposition.

The equation for the reaction which occurs is given below.

 $Na_2CO_3 \bullet yH_2O(s) \rightarrow Na_2CO_3(s) + yH_2O(g)$

Solid **FB 5** is another sample of hydrated sodium carbonate, Na₂CO₃•**y**H₂O.

(a) Method

- Weigh the empty crucible with its lid. Record the mass.
- Transfer all the **FB 5** from its container into the crucible.
- Weigh the crucible, lid and **FB 5**. Record the mass.
- Calculate and record the mass of **FB 5** used.
- Place the crucible and contents on a pipe-clay triangle.
- Heat the crucible gently, with the lid on, for approximately 1 minute.
- Heat strongly, with the lid on, for a further 1 minute.
- Heat strongly, with the lid off, for a further 4 minutes.
- Allow the crucible to cool, with the lid on, for at least 5 minutes.

During the cooling period you may wish to start work on Question 3.

- When the crucible is cool, weigh the crucible with its lid and contents.
- Calculate and record the mass of the residue obtained and the mass lost during heating.

Ι	
II	
III	

[3]

(b) Use your results to calculate a value for y.

(c) Suggest one improvement to the method used in Question 2 which would lead to a more accurate value for y.

[Total: 6]

Qualitative analysis

Where reagents are selected for use in a test, the **name** or **correct formula** of the element or compound must be given.

At each stage of any test you are to record details of the following:

- colour changes seen
- the formation of any precipitate and its solubility in an excess of the reagent added
- the formation of any gas and its identification by a suitable test.

You should indicate clearly at what stage in a test a change occurs.

If any solution is warmed, a **boiling tube** must be used.

Rinse and reuse test-tubes and boiling tubes where possible.

No additional tests for ions present should be attempted.

- 3 (a) FB 6, FB 7 and FB 8 each contain one cation and one anion. All the cations and anions are different. All the cations and two of the anions are listed in the Qualitative Analysis Notes. FB 7 is an aqueous solution.
 - (i) Carry out the following tests and record your observations.

test	observations
Test 1 To a 1 cm depth of hydrogen peroxide in a test-tube, add a small spatula measure of FB 6 .	
Test 2 To a 2 cm depth of aqueous potassium manganate(VII) in a test-tube, add the same depth of aqueous sodium hydroxide. Then add a small spatula measure of FB 6 . Stir for about 30 seconds. Filter the mixture and collect the filtrate, then	
add dilute sulfuric acid to the filtrate.	

test	observations
Test 3 To a 1 cm depth of FB 7 in a test-tube, add an equal volume of hydrogen peroxide. Shake the tube, then	
add aqueous sodium hydroxide.	
Test 4 To a 1 cm depth of FB 7 in a test-tube, add a few drops of aqueous barium chloride or aqueous barium nitrate, then	
add dilute hydrochloric acid.	
Test 5 Place a small spatula measure of FB 8 into a hard-glass test-tube. Heat the contents.	
Test 6 Dissolve a small spatula measure of FB 8 in a 2 cm depth of distilled water in a test-tube. To the solution add a few drops of aqueous silver nitrate, then	
add aqueous ammonia.	

[7]

(ii) From your test results, identify the anions in **FB 6**, **FB 7** and **FB 8**. If the tests do not allow you to positively identify an anion, write 'unknown'.

	FB 6	FB 7	FB 8
formula of anion			

(b) Aqueous sodium hydroxide may be used to help identify cations. You will use this reagent to carry out tests on FB 7 and FB 8. Record your method, observations and conclusions in the space below.

You are reminded that if any solution is warmed, a boiling tube **must** be used.

Ι	
II	
III	
IV	

[4]

(c)	(i)	From your observations, suggest a conclusion that could be made about the chemical behaviour of FB 7 in Test 3 of (a)(i) . Explain your answer.
		[1]
	(ii)	Write an ionic equation for any precipitation reaction you observed in (a)(i) . Include state symbols.
		[1]
		[Total: 15]

11

BLANK PAGE

12

BLANK PAGE

13

BLANK PAGE

Qualitative Analysis Notes

1 Reactions of aqueous cations

ian	reaction with			
ion	NaOH(aq)	NH ₃ (aq)		
aluminium, Al ³⁺ (aq)	white ppt. soluble in excess	white ppt. insoluble in excess		
ammonium, NH₄⁺(aq)	no ppt. ammonia produced on heating	_		
barium, Ba²+(aq)	faint white ppt. is nearly always observed unless reagents are pure	no ppt.		
calcium, Ca²+(aq)	white ppt. with high [Ca ²⁺ (aq)]	no ppt.		
chromium(III), Cr³+(aq)	grey-green ppt. soluble in excess	grey-green ppt. insoluble in excess		
copper(II), Cu²+(aq)	pale blue ppt. insoluble in excess	pale blue ppt. soluble in excess giving dark blue solution		
iron(II), Fe²+(aq)	green ppt. turning brown on contact with air insoluble in excess	green ppt. turning brown on contact with air insoluble in excess		
iron(III), Fe ³⁺ (aq)	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess		
magnesium, Mg²+(aq)	white ppt. insoluble in excess	white ppt. insoluble in excess		
manganese(II), Mn²+(aq)	off-white ppt. rapidly turning brown on contact with air insoluble in excess	off-white ppt. rapidly turning brown on contact with air insoluble in excess		
zinc, Zn²+(aq)	white ppt. soluble in excess	white ppt. soluble in excess		

2 Reactions of anions

ion	reaction
carbonate, CO ₃ ²⁻	CO ₂ liberated by dilute acids
chloride, C <i>l</i> ⁻(aq)	gives white ppt. with Ag ⁺ (aq) (soluble in $NH_3(aq)$)
bromide, Br⁻(aq)	gives cream ppt. with Ag ⁺ (aq) (partially soluble in $NH_3(aq)$)
iodide, I⁻(aq)	gives yellow ppt. with Ag ⁺ (aq) (insoluble in $NH_3(aq)$)
nitrate, NO ₃ ⁻(aq)	NH_3 liberated on heating with $OH^-(aq)$ and Al foil
nitrite, NO₂⁻(aq)	NH_3 liberated on heating with OH ⁻ (aq) and A1 foil
sulfate, SO ₄ ²⁻ (aq)	gives white ppt. with Ba ²⁺ (aq) (insoluble in excess dilute strong acids)
sulfite, SO ₃ ²⁻ (aq)	gives white ppt. with Ba ²⁺ (aq) (soluble in excess dilute strong acids)

3 Tests for gases

gas	test and test result	
ammonia, NH ₃	ia, NH ₃ turns damp red litmus paper blue	
carbon dioxide, CO ₂	gives a white ppt. with limewater (ppt. dissolves with excess CO ₂)	
chlorine, Cl_2	bleaches damp litmus paper	
hydrogen, H ₂	'pops' with a lighted splint	
oxygen, O ₂	relights a glowing splint	

The Periodic Table of Elements	Group	13 14 15 16 17 18	E Heitum 4.0			6 7 8 9	L N N N	boron carbon nitrogen oxygen fluorine neon 10.8 12.0 14.0 16.0 19.0 20.2	14 15 16 17	Si P S C <i>l</i>	12 aluminium silicon phosphorus sulfur chlorine argon 27.0 28.1 31.0 32.1 35.5 39.9	31 32 33 34 35	Ga Ge As Se Br	germanium 72.6	49 50 51 52 53	In Sn Sb Te I	indium tin 114.8 118.7	81 82 83 84 85	T <i>l</i> Pb Bi	polonium astatine –	112 114	El El	copernicium flerovium – liv –	1	66 67 68 69 70	Dy Ho Er Tm Yb	erbium thulium ytterbium 1 167.3 168.9 173.1	98 99 100 101 102	Cf Es Fm Md No	einsteinium fermium mendelevium nobelium law
											9 10			cobalt nickel 58.9 58.7			rhodium palla 102.9 10			iridium platinum 192.2 195.1			meitnerium darmstadtium –		-		europium gadolinium 152.0 157.3			americium cur
			-	т	hydrogen 1.0						8			iron 55.8	-		ruthenium rho 101.1 11	-				Hs	_				samarium eur 150.4 1	-		plutonium ame
					-]					7	25	Mn	manganese 54.9	+		technetium ru	+		rhenium 186.2					_		۶			neptunium p
					Key	atomic number	atomic symbol	name relative atomic mass			9		Ċ	chromium 52.0	-		molybdenum 95.9		8	tungsten 183.8	106	Sg	seaborgium -		60		E			uranium 238.0
											5	23	>	vanadium 50.9	41	qN	niobium 92.9	73	Та	tantalum 180.9	105	Db	dubnium –		59	ŗ	praseodymium 140.9	91	Ра	protactinium 231.0
								rels			4	22	i	titanium 47.9	40	Zr	zirconium 91.2	72	Ηf	hafnium 178.5	104	Rf	rutherfordium –			0e	cerium 140.1	06	Th	thorium 232.0
											с	21	Sc	scandium 45.0	39	≻	yttrium 88.9	57-71	lanthanoids		89-103	actinoids			57	La	lanthanum 138.9	89	Ac	actinium -
		2				4	Be	beryllium 9.0	12	Mg	magnesium 24.3	20	Ca	calcium 40.1	38	Sr	strontium 87.6	56	Ba	barium 137.3	88	Ra	radium –			oids			(0	
		٢				e	:	lithium 6.9	1	Na	sodium 23.0	19	¥	potassium 39.1	37	Rb	rubidium 85.5	55	Cs	caesium 132.9	87	ŗ	francium -			lanthanoids			actinoids	

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

PMT

16